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Abstract— Human-humanoid collaborative tasks require that
the robot take into account the goals of the task, interaction
forces with the human, and its own balance. We present a
formulation for a real-time humanoid controller which allows
the robot to keep itself balanced, while also assisting the human
in achieving their shared objectives. We achieve this with
a multi-robot quadratic program controller, which solves for
human dynamics reconstruction and optimal robot controls in
a single optimization problem. Our experiments on a simulated
robot platform demonstrate the ability to generate interaction
motions and forces that are similar to what a human collabo-
rator would produce.

I. INTRODUCTION

In recent years, improved sensing capabilities and safer
hardware have allowed robots to move into shared spaces
with humans, such as factory floors and homes. In many
cases, the robots do not replace humans; they complement
human capabilities and relieve them of arduous tasks. Co-
manipulation systems combine the reasoning abilities of
human operators with the precision and power of robots,
which results in increased productivity and human comfort.

An ideal co-manipulation robot would be able to:
1) Learn general categories of motions to be performed
2) Adapt to slight variations in conditions (e.g. human or

object position)
3) Actively aid the human in achieving shared goals
In this paper, we propose a humanoid robot controller for

physical human-robot interaction (pHRI) tasks that addresses
the third point: a controller that can produce optimal motions
in real-time, considering both the robot’s balance and hu-
man assistance goals. We achieve this using a multi-robot
quadratic program controller, which maintains an internal
representation of the human’s whole-body dynamics along
with those of the robot and any other manipulated objects.

Intuitively, this corresponds to how humans adjust their
motions based on the anticipated effects of interactions
with other objects on their own dynamics. We bend down
lower when picking up heavy objects than for light objects.
Similarly, we lean back and pull harder when trying to help
an adult stand up, than when helping a small child. By
incorporating a whole-body dynamics model of the human in
our controller, we take a first step towards proactive human-
humanoid interaction, as opposed to reactive interaction
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Fig. 1. In collaborative tasks, the humanoid robot must reason about:
goals of the task, interaction forces with the human, and its own balance.
A human collaborator equipped with wearable sensors can provide further
information about the human’s movement during the task.

based on recent sensor data. We demonstrate in simulation
experiments that the controller can generate interaction mo-
tions/forces similar to what a human partner would produce,
in co-manipulation and balance assistance tasks.

A. Related Work

Control algorithms for pHRI have several modalities avail-
able for the robot’s perception of the human: vision (e.g. ges-
ture/posture detection), sound (e.g. voice commands), bio-
signals (e.g. EMG), and force/pressure sensors (e.g. force-
torque on end effectors). Of these modalities, force-torque
sensors (haptic data) have been used most often, due to the
simplicity of the underlying mechanism. The haptic data is
usually used to regulate the robot’s impedance (resistance
to motion caused by external forces) in order to generate
compliant behavior [1] [2].

Hybrid methods using multiple sensing modalities have
been shown to improve capabilities in certain tasks. Early
human-humanoid interaction work by Yokoyama et al
showed that visual and haptic feedback, along with voice
commands, allow a humanoid robot to collaboratively carry
a large object with a human [3]. Agravante et al use a similar
approach to collaboratively carry a table while balancing
a free-rolling ball on the table [4]. They use a decoupled
approach which separates manipulation and balance control,
while the human is sensed as an external force.



A limitation in most existing controllers for physical
human-robot interaction is that the representation of the
human state is vastly simplified as an external force or end
effector poses. The whole-body configuration and dynamics
of the human are rarely considered, which limits the types
of interaction that are possible. Much of this is due to
limitations in sensing: getting information about a human’s
whole-body configuration is much more difficult than sensing
interaction forces. However, we feel that recent advances
in whole-body motion tracking suits [5] and visual pose
estimation (e.g. [6]) allow us to relax this constraint, and
investigate the possible applications. For example, having
a kinematic model of the human body could allow us to
reason about the ergonomics (e.g. posture, exertion) of a
collaborative motion.

Among the works that do consider a full human model,
there have been applications in: optimizing human comfort
in selecting handoff configurations [7], offline trajectory opti-
mization for predicting the motion of an exoskeleton-assisted
human [8], finding configurations for a fixed-base manipula-
tor that minimize human exertion in co-manipulation [9].
These methods are used for higher-level planning and/or
only consider kinematic data. The work in this paper was
developed to test our hypothesis that there are certain tasks,
such as co-manipulation and balance assistance, in which
having a whole-body dynamics model of the human is useful
for controlling interaction motions in real-time.

For humanoid control, quadratic program (QP) controllers
have become ubiquitous in recent years due to their robust-
ness, speed, and flexibility. QP controllers allow intuitive
encoding of constraints and objectives in an optimization
problem that can be solved at real-time control rates. Early
QP control work of Abe et al [10] and De Lasa et al [11]
demonstrated multi-objective control for generating natural
movements in computer animated characters. In the recent
DARPA Robotics Challenge, many of the teams relied on
a QP for their joint-level inverse dynamics controller [12],
[13], [14].

Our approach makes use of the multi-robot QP (MRQP)
controller introduced by Vaillant et al for animated char-
acters [15], and applied to real robots in [16]. The MRQP
extends QP-based humanoid controllers to consider the com-
bined dynamics of multiple robots.

To reconstruct human dynamics, we use a QP controller to
map the motion capture data onto a simulated human. The
use of a task-based controller and an approximate model
for the reconstruction of human motions has been shown
to be quite reliable in prior works. In [17], a task-based
controller that seeks to minimize position error (against
human markers) and muscular effort on a musculoskeletal
model are shown to provide a good match with motion
capture data. In [18], a QP controller is used to simulate a
rigid body tree model of a human, and is empirically shown
to produce similar trajectories to real humans for multiple
motions.

B. Contributions

Our contribution is a formulation for reconstructing the
dynamics of human motion and solving a humanoid control
problem in a single optimization, using a MRQP controller
to explicitly model the whole-body dynamics of both the
human and the robot. This allows for real-time control of
a humanoid robot during co-manipulation tasks, generating
motions that simultaneously keep the robot balanced and
assist the human. We demonstrate that the controller can
assist the human in symmetric co-manipulation tasks and
maintaining balance. The use of a full-body model for
the human, as well as a combined human-robot dynamical
system, allows a richer ”vocabulary” for specifying desired
behaviors as optimization objective functions.

The rest of this paper is organized as follows: Section II
reviews the formulation of QP and MRQP controllers. Sec-
tion III outlines our approach for modeling human dynamics
and physical interaction in a MRQP. Section IV demonstrates
the advantages of our controller through experiments in
simulation. Section V discusses the results and limitations
of this method. Section VI draws conclusions and discusses
possibilities for future work.

II. PRELIMINARIES

A. Weighted QP control

QP control for humanoid robots consists in solving, at
each control time-step, the following optimization problem:

min
q̈,τ,λ

∑
k

wk||ÿk − ÿdk||2 , (1)

s.t. dynamics constraints
no-slip contacts (with environment)
forces within friction cones
joint position, velocity, torque limits
collision avoidance

(2)

The decision variables of this problem are the generalized
acceleration q̈, where q denotes the configuration of the robot
including its 6D free-floating base, τ are the actuation joint
torques, and λ the coefficients of contact forces basis vectors
along linearized friction cones.

By using a linear approximation of the friction cones at
the contact points, and writing the joint limits and collision-
avoidance constraints to be linear in the decision variables,
the optimization problem above is a QP [19].
yk denote quadratic objectives that encode desired motion,

which we will call “tasks”. ÿdk is the desired acceleration of
the task, which can be derived from a desired trajectory or
set-point of the task. wk is the weight/soft priority of the
task. The tasks can be mapped from the configuration space
to any kind of ‘operational space’ with Jacobians, as shown
in [11]. One possible mapping is with PD regulation towards
a set-point:

ÿdesk = kp(y
ref
k − yk)− kv ẏk (3)

q̈des = J−1
k (ÿdesk − J̇kq̇) (4)



The QP controller is often at the bottom of a planning
hierarchy, whose top layers produce higher-level plans using
simplified models of the robot [20] or multi-contact plans
with nonlinear optimization [21].

B. Multi-Robot QP control

In [16], the QP control framework is extended to control
systems of multiple “robots” interacting among each other
or with a dynamic environment. Let n be the number of
such entities. In a collaborative robot-robot co-manipulation
scenario, n = 3 (two robots and the manipulated object).

The MRQP framework is based on the assumption that
each entity i (i = 1 . . . n) can be modeled with the general
dynamics equation of motion

Mi(qi)q̈i +Ni(qi, q̇i) =
∑
p

JTi,p(qi)fi,p + STi τi , (5)

which accounts for all possible actuated/non-actuated/under-
actuated cases through the control selection matrix Si. The
general equation (5) also accounts for all possible fixed-
base/floating-base cases through the inclusion (or exclusion)
of the the base frame configuration in q. We can thus use
this equation to model humanoid robots (possibly multiple),
as well as floating objects (e.g. boxes) or articulated passive
environments objects (e.g. doors).

The n entities physically interact with each other by ex-
changing contact forces, which come in action-reaction pairs
according to Newton’s second law. Each contact force fi,p
on entity i is either applied by the fixed inertial environment,
or by one of the other entities j and appears with an opposite
sign in that entity’s equation as fi,p = −fj,p′ .

By rearranging the forces, we can keep exactly one
representative of each action-reaction pair (fi,p, fj,p′) as
decision variables of the MRQP, showing that there exists
a permutation matrix Ψ such that we can combine all of the
equations of motion of the n entities in one single equation:

M(q)q̈+N(q, q̇) = JT0 F
0 + (J−−ΨTJ+)TF− +Sτ , (6)

where q, τ , N denote the stacked vectors of generalized
configurations, actuation torques, and nonlinear effects re-
spectively, M and S are the stacked block-diagonal matrices
of Mi and Si respectively, F 0 is the stacked vector of
fixed inertial environment contact forces with corresponding
stacked block-diagonal Jacobian matrix J0, F− the stacked
vector of single representatives of forces between entities,
J− and J+ are Jacobian matrices corresponding to the con-
tact points between the different entities of the multi-robot
system. (Detailed derivations of these components in [16])
We can also derive no-slip contact constraints between the
different entities and with the environment as (J−−ΨJ+)q̇ =
0 and J0q̇ = 0.

Once the combined dynamics are formed, the formulation
is equivalent to a single-robot QP controller, with the addi-
tion of the constraints for contacts and collision-avoidance
between the entities. Denoting λ0 and λ− as the coefficients
along the linearized friction cone generators of F 0 and F−

respectively:

min
q̈,τ,λ0,λ−

∑
k

wk||ÿk − ÿdk||2 , (7)

s.t. Mq̈ +N = JT0 F
0 + (J− −ΨTJ+)TF− + Sτ

J0q̈ + J̇0q̇ = 0

(J− −ΨTJ+)q̈ + (J̇− −ΨT J̇+)q̇ = 0

λ = (λ0, λ−) ≥ 0

qmin ≤ q ≤ qmax
q̇min ≤ q̇ ≤ q̇max
τmin ≤ τ ≤ τmax

(8)

This optimization problem can be solved at real-time rates
(200Hz) to control multiple robots. With an interface that
simplifies the specification of desired behavior as quadratic
objective tasks, the multi-robot QP allows for the generation
of complex interaction behaviors from easily-interpretable
objectives. The tasks can be written for the combined system
(e.g. combined center-of-mass) or imply desired behavior of
the whole system through a task on a single robot (e.g. task
on the position of the co-manipulated object that drives all
the robots in contact with the object). In previous works, this
has been used for collaborative carrying between two robots,
environment object (box, door) manipulation, and human-to-
humanoid motion retargeting of manipulation motions.

In this paper, we consider three entities (n = 3): humanoid
robot, human (incorporated using the method described in the
next section), and a co-manipulated object.

III. METHODS

A. Human model

We incorporate a whole-body dynamics model of the
human into the multi-robot QP as one entity of the system
whose dynamics are modeled by equation (5). The simulated
human tracks the real human’s motions, which the robot then
uses as a virtual approximation of the real human to reason
about the human-robot system’s combined dynamics.

In formulating our multi-robot QP, we assume that the
whole-body configuration of the human is known. To capture
human motion we use an Xsens MVN inertial motion capture
suit [5], a wearable system with 17 wireless IMUs embedded
in a lycra suit, which tracks motion at 240Hz. IMU data are
mapped onto the motion of a calibrated biomechanical model
with 23 segments, connected via 22 three-dimensional joints.
The motion capture system provides: link positions/orienta-
tions and joint angles, along with their first and second time
derivatives.

The Xsens motion capture data is mapped onto our sim-
ulated human model, which is a 22-joint rigid body tree
model, described in a URDF format. The limb lengths and
masses are parametrized as a function of the subject’s height
and weight, based on average anthropometric coefficients
[22], with further customization possible to match a subject’s
specific measurements.
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Fig. 2. Diagram showing the difference between our two methods for
human motion reconstruction. In both methods, the motion capture data is
mapped onto our parametrized 22-joint human model, which is then used
to compute the robot’s controls.

B. Human motion reconstruction

To accurately reconstruct human motion with our MRQP,
we build on the ideas from [23] and set high-weight motion
tracking objectives on the human “robot”, which take motion
capture data as time-varying setpoints.

We use a posture task (objective on desired generalized
configuration qdes) to track the joint angles of the human’s
motion. On top of that, we set human motion tracking
tasks on end effector pose (position and orientation tasks),
since this is the most important feature of human motion
for applications involving physical interaction (these are the
links most often in contact with the human and external
environment). These two tasks combine to produce an ap-
proximation of the motion capture data on our simulated
human model.

To integrate the human motion reconstruction into a
MRQP, we investigated two methods (illustrated in Figure 2).

1) Single MRQP: Perform human motion reconstruction
directly in the multi-robot QP, ensuring that the simulated
human closely tracks the real human’s motion by setting
human motion tracking task weights to be significantly
higher than robot’s task weights. This is the “soft priority”
approach.

2) Cascaded QP-MRQP: Have a single-robot QP for
human motion tracking with the simulated human (QP1), and
a multi-robot QP for calculating the robot’s motion given
the simulated human’s dynamics (QP2). The solution for
the human motion q̈human from QP1 is set as an equality
constraint on the human model’s motion in QP2. This is the
“hard priority” approach.

Method 1 has the advantage that it is simpler to implement
and is less computationally expensive (it only solves one

QP). The disadvantage of this method is that it requires
tuning of the weights to trade off between rigidly tracking
human motion (so the controller has an accurate estimates
of the real human’s motion) and achieving the robots tasks.
In practice, we found that this method could reconstruct the
human motion with reasonable accuracy (see Section IV and
Figure 4).

Method 2 decouples the human model’s motion from the
optimization for the robot’s motion, which allows stricter
tracking of the motion capture data by the simulated human.
However, in our experiments we found that it was less stable.
We often saw the QP fail because of violated constraints,
especially for fast movements. Based on our investigations,
we believe this is because accumulated numerical errors lead
to drift between the simulated human’s states qhuman in QP1
and QP2, which means that large q̈human commands cause
discrepancies in end effector motions large enough for other
QP2 constraints (friction cone, no-slip contact) to be violated.
In this context, Method 1 can be interpreted as a way to allow
some “slack” in the human motion tracking to make the QP
solvable.

For the reasons above, our implementation used Method
1 for integrating human motion tracking into the MRQP
framework.

Collaboration between humans and robots often involves
co-manipulation of objects (e.g. collaborative pick & place
of large/heavy objects). In those cases, the objects also need
to be modeled and added to the QP problem. Following
the MRQP framework, objects are modeled as independent
entities with their own dynamics equations. We make the as-
sumption that the geometrical model and inertial parameters
of the manipulated object are known.

C. Robot objectives

The quadratic objectives in the MRQP controller define the
metrics that the robot seeks to minimize in its motions. The
tasks that we use in our approach can be separated into two
categories: individual objectives for the robot, and interaction
objectives that define the robot’s behavior as a function of
the human’s motion.

For the robot’s individual tasks, we set objectives that
keep the robot balanced and in a natural posture away from
singularities.

Balance is encoded in a center-of-mass (CoM) task, which
encourages the robot to keep its CoM above the center of its
support polygon, and a CoM bound constraint, which limits
p̈des

CoM to ensure that the ground projection of the robot’s CoM
does not go outside its support polygon. The CoM bounds are
defined in hyperplane representation {pCoM | ApCoM ≥ b},
and implemented as a damping behavior that slows down the
CoM as it nears the boundaries of the convex hull:

ḋ+ d̈∆t ≥ −ξ d− ds
di − ds

(9)

with d as the distance between pCoM and the nearest hyper-
plane, di the interaction distance at which damping turns on,
ds the security distance (minimum distance by which to stay
inside convex hull), ξ the damping coefficient.



We include a posture (full configuration space) task on
the robot, whose reference is set to a rest posture q0 with
a low weight. This task ensures that the optimization is
well-conditioned. In practice, it also acts as a prior on
reasonable motions and helps generate more natural-looking
movements.

D. Interaction objectives

The tasks described above encourage the robot to be
individually balanced. We then add objectives that define the
desired interaction between the robot and the human. These
objectives define the robot’s motion as an implicit function
of the human’s motion, which is solved for by the MRQP at
each timestep.

The first interaction task is a regularization/minimization
objective on the robot’s contact forces with other entities (λ−
in Equation (7)), to avoid unrealistic behaviors in which the
humanoid leans on/pushes other entities excessively.

For the experiments in this paper, we assumed that the
human and the robot are performing a symmetric motion in
which they face each other and perform mirrored versions
of each other’s motions. To achieve this, we set the desired
pose of the robot’s end effector to be a mirrored version of
the human’s end effector pose.

To derive the mirrored pose, we perform mirroring oper-
ations on the transform (where T = {x, y, z, qw, qx, qy, qz})
from the human’s reference frame to their end effector
TH hand

H ref , which is then projected from the robot’s reference
frame to TR hand

R ref . The reference frames in world frame
{TH ref

W , TR ref
W } are chosen to be at the midpoints between

each robot’s feet at initialization, with x, y, z axes pointing in
the forward, left, and up directions respectively. We defined
a “mirroring” operation Tmirrored = Mirror(TH) on position
and orientation:

qH = {w, x, y, z} → qmirrored = {z, y, x, w}
xmirrored = xH

zmirrored = zH

ymirrored =

{
yH if no contact
yR
0 + (yH

0 − yH) if contact

(10)

where y0 are the coordinates of the end effectors when the
contact is initially established. The mirroring rule for the y
direction amounts to “mirror when there’s no contact, move
together in longitudinal direction when there is contact”. The
desired robot end effector position is calculated with:

(TR hand
W )des = Mirror(TH hand

H ref ) · TR ref
W (11)

Some other interaction tasks that can be used are:

• Collision avoidance between robots
• Minimize distance/orientation errors between human

and robot end-effectors (e.g. for a handoff)
• Simulated human joint torque - induce the robot to carry

more load

Fig. 3. Steps of Experiment 1. See attached video for a better view.

IV. EXPERIMENTS

To demonstrate the effectiveness of our pHRI framework,
we performed several experiments in dynamics simulation
with an HRP-4 humanoid robot. We show that our controller
can generate realistic interaction motions/forces for symmet-
ric placement and balance assistance tasks.

These experiments were done using recorded motion of a
human during a human-human collaborative task: only one
partner was equipped with an XSens MVN motion capture
suit [5], as the second partner is replaced by the robot in
our simulations. Obviously this is not completely analogous
to using this pHRI controller in real life; the limitations are
discussed in Section V.

A. Symmetric placement task

The first experiment is a collaborative pick-and-place
experiment, in which the human and robot work together to
move a pole from one side of their bodies to the other. This
task shows a simple application of the mirroring heuristic
for generating robot follower motion. The pole is modeled
as a floating-base unarticulated robot whose dynamics are
incorporated into the combined dynamical system when
contact is established.

This is a simple motion that could possibly be replicated
using other pHRI controllers. Even a simple impedance
control framework would allow this motion, provided that
the human exerts the extra torque needed to ”push” the robot
in the right direction. However, our controller reduces the
amount of force the human needs to exert by encoding an
assumption about the desired motion in the ”mirroring” task.

B. Balance assistance

In this experiment, the human leans their CoM outside of
their own support polygon while holding onto a pole together
with the robot. In the initial recording of the human-human
motion, this required the partner (who the robot replaces) to
pull back on the pole, keeping the human in balance.

The simulation results (depicted in Figures 5 and 6) show
that our controller calculates the effect that the human’s
leaning will have on the combined system, and generates
a motion in which the robot leans back and braces itself to
pull on the barbell/human. This assistive behavior emerges
from the robot’s individual CoM task, as well as the human
model’s motion tracking task.

This experiment shows the advantage gained from mod-
eling the whole-body dynamics of the human. Other ap-
proaches that use a less complete representation of the human
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Fig. 4. Tracking errors: difference of end effector (top) and CoM (bottom)
position between human motion capture data and our simulated human
model in Experiment 1. Results shown for both methods of human motion
reconstruction. As expected, the Cascaded QP-MRQP method tracks closer.
The Single MRQP method tracks within 10cm error.

would have a hard time cleanly formulating the robot’s
assistive behavior in this situation.

C. Implementation details

Below is a complete list of the tasks used in the exper-
iments, along with their relative weights. All tasks were
implemented with the PD set-point regulator described in
Equation 3.

• Robot individual tasks: center-of-mass (100), posture
(1)

• Robot interaction tasks: right end effector (50), contact
force minimization (4)

• Human tracking tasks: center-of-mass (200), posture
(60), left end effector (14), right end effector (60)

Contact change events were manually annotated in the
recorded data, and handled via the method described in our
prior work on motion retargeting [24]. In co-manipulation
scenarios, we assume that the contact changes are simulta-
neous for the human and robot.

V. LIMITATIONS OF TESTING PHRI IN SIMULATION

Our experiments were done in simulation, using pre-
recorded motion of a human during a human-human col-
laborative task. Thus, our experiments show how a robot
running our controller would react to a predetermined human

Fig. 5. Robot assisting human with balance in Experiment 2. Forces on
robot and human shown in red.

Fig. 6. Interaction forces (forces felt by the robot) in the x-direction (for-
ward/backward) on the robot’s right end effector during Experiment 2. Our
controller generates realistic interaction forces that keep the collaborative
task balanced.

motion. This means that motions which actively affect the
human’s motion (pushing/pulling CoM, encouraging human
to lower arms, etc.) were excluded from these experiments.
The experiments shown here demonstrate our controller’s
ability to generate motions/forces that are similar to what
the human partner executed during the initial recording of
the human-human motion. We also assume that the robot
knows the goals of the task a priori, e.g. symmetric motion
with the human.

To apply our framework in real pHRI scenarios, the robot’s
low-level motor control must allow some compliance so
that the human can influence the robot’s motion, and to
account for small errors in the MRQP’s human motion
reconstruction (shown in Figure 4). The MRQP controller
outputs a set of control setpoints {q̈des, τdes, λdes}; in our
simulation experiments, the HRP-4 was controlled with joint
position control by integrating q̈des twice to get qdes. To add
compliance to the robot’s motions, we can use a motor torque
controller that takes qdes and τdes as inputs.



VI. CONCLUSIONS AND FUTURE WORK

This paper presents a formulation of humanoid control
for pHRI tasks, using a multi-robot QP to model the whole-
body dynamics of the human. We show in simulation exper-
iments that the controller can generate assistive motions for
accomplishing collaborative tasks. This method is flexible
and is easily adapted to varying robot morphologies, as well
as different motion objectives.

Our future work will focus on implementing this controller
on a real robot for physical experiments. Some additional
avenues for future work are described below:

1) Integration with methods for predicting human intent:
With our current approach, we make a priori assumptions
about the type of motion the human will want to make. In-
tegration of intent prediction algorithms into our framework
would allow the robot to be more flexible; it won’t have
to make strong assumptions on the type of motion to be
performed. Instead, the robot can be trained to perform a
diverse set of collaborative motions, and infer the human’s
intended motion online. Thereafter, the robot will be able to
actively help the human achieve the task with motion-specific
interaction objectives. (“Intent” can consist of goal configu-
rations, trajectories, speed, etc.; some these are demonstrated
in [25].)

2) Better modeling of human dynamics, reactions to ex-
ternal forces: To get a more accurate dynamics model
of the human body than a rigid body tree, we can use
neuromuscular human simulations which simulate individual
muscles and tendons [26]. However, these simulations are
too computationally expensive to run in real-time. One way
around this is to have a surrogate model for the neuromus-
cular simulation (e.g. a neural network) which can be used
as an inexpensive, real-time approximation to the full model
and run in real-time as part of the QP controller.

ACKNOWLEDGEMENTS

This work received funding from the European Commis-
sion (GA no. 731540, H2020 project “An.Dy”). The authors
would like to thank the IDH team in LIRMM and JRL for
their support in using the multi-robot QP framework, and
Pauline Maurice for implementing the human URDF model
generator.

REFERENCES

[1] K. Kosuge and N. Kazamura, “Control of a robot handling an object
in cooperation with a human,” in Robot and Human Communication,
1997. RO-MAN’97. Proceedings., 6th IEEE International Workshop
on. IEEE, 1997, pp. 142–147.

[2] R. Ikeura and H. Inooka, “Variable impedance control of a robot
for cooperation with a human,” in Robotics and Automation, 1995.
Proceedings., 1995 IEEE International Conference on, vol. 3. IEEE,
1995, pp. 3097–3102.

[3] K. Yokoyama, H. Handa, T. Isozumi, Y. Fukase, K. Kaneko, F. Kane-
hiro, Y. Kawai, F. Tomita, and H. Hirukawa, “Cooperative works by a
human and a humanoid robot,” in Robotics and Automation, 2003.
Proceedings. ICRA’03. IEEE International Conference on, vol. 3.
IEEE, 2003, pp. 2985–2991.

[4] D. J. Agravante, A. Cherubini, A. Bussy, P. Gergondet, and A. Khed-
dar, “Collaborative human-humanoid carrying using vision and haptic
sensing,” in Robotics and Automation (ICRA), 2014 IEEE Interna-
tional Conference on. IEEE, 2014, pp. 607–612.

[5] “Xsens MVN,” http://www.xsens.com/products/xsens-mvn/.
[6] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio,

A. Blake, M. Cook, and R. Moore, “Real-time human pose recognition
in parts from single depth images,” Communications of the ACM,
vol. 56, no. 1, pp. 116–124, 2013.

[7] A. Bestick, R. Bajcsy, and A. D. Dragan, “Implicitly assisting humans
to choose good grasps in robot to human handovers,” in International
Symposium on Experimental Robotics. Springer, 2016, pp. 341–354.

[8] M. Millard, M. Sreenivasa, and K. Mombaur, “Predicting the motions
and forces of wearable robotic systems using optimal control,” Fron-
tiers in Robotics and AI, vol. 4, p. 41, 2017.

[9] W. Kim, J. Lee, L. Peternel, N. Tsagarakis, and A. Ajoudani,
“Anticipatory robot assistance for the prevention of human static
joint overloading in human-robot collaboration,” IEEE Robotics and
Automation Letters, 2017.

[10] Y. Abe, M. Da Silva, and J. Popović, “Multiobjective control with
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