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Abstract— We propose a controller for loco-manipulation mo-
tion retargeting from a human to a humanoid robot. Using this
controller, the robot can track complex motions and automati-
cally adapt to elements in the environment that have different
physical properties from those that were used to provide the
human’s reference motion. The multi-contact loco-manipulation
problem is formulated as a multi-robot quadratic program
(MRQP), which optimizes over the combined dynamics of the
robot and any manipulated element in the environment. Our
approach maintains a dynamic partition of the robot’s tracking
links into fixed support contact links, manipulation contact
links, and contact-free tracking links. The three sets are re-
partitioned and re-instantiated as objectives or constraints in
the MRQP when contact events occur in the human motion. We
present various experiments (bag retrieval, door opening, box
lifting) using human motion data from an Xsens inertial motion
capture system. We show in dynamics simulation that the robot
is able to perform difficult single-stance motions as well as
multi-contact-stance motions (including hand supports), while
adapting to environment elements of varying inertial properties.

I. INTRODUCTION AND RELATED WORK

Recent developments in human motion tracking tech-
nologies allow high-fidelity, high-frequency tracking of a
human’s motion. The data from these systems can be used
to generate human-like motions on humanoid robots.

Human-to-humanoid motion retargeting can be applied to
teleoperation in disaster scenarios, where a robot may be
better equipped to enter hazardous environments, as well
as learning from demonstration, in which a robot learns a
generalizable representation of a task from human demon-
stration. In particular, we believe that motion retargeting is
a powerful tool for bootstrapping robot motion planning in
complex multi-contact scenarios. Examples of tasks in this
category are the vehicle egress task in the DARPA Robotics
Challenge, and walking through cluttered manufacturing
environments.

However, direct mapping of motion from humans to hu-
manoid robots is not possible, due to differences in kinemat-
ics (e.g. joint limits, limb lengths) and dynamics (e.g. mass
distribution). A motion retargeting method must generate a
robot motion that is feasible and stable, while also following
the salient parts of the human demonstration as closely as
possible.
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Pollard et al [1] showed one of the first approaches to
motion retargeting of human movements for humanoids, in
which they edited the human reference motion to keep the
robot within its joint angle and velocity limits. They only
imitated upper-body movements of a humanoid, and hence
did not consider balance.

Subsequent works proposed methods for ensuring the
robot’s balance. Many of them use simplified models of the
robot to generate center-of-mass (CoM) trajectories and/or
keep the robot stable around a desired CoM position. Dariush
et al [2] formulated upper body imitation as task space con-
trol with a separate ZMP-based balance controller. Yamane
and Hodgins [3] employed a “dynamics filter” to modify the
CoM trajectory to keep the robot balanced. Kim et al [4]
extracted footsteps from motion capture data and generated
CoM trajectories with a linear inverted pendulum model. Hu
et al [5] combine ZMP control with an objective to stay
close to human joint trajectories. Bin Hammam et al [6] use
the resolved acceleration method for tracking whole-body
motions in double stance. Note that these methods were
applied only to walking or standing; because of this, they
often had built-in assumptions that only the feet would make
contact with the environment, and that the robot is on flat
horizontal ground.

This work is concerned with retargeting whole-body ma-
nipulation motions that are integrated with locomotion. This
presents additional challenges, such as changes in support
contacts, and more notably, changes in dynamics due to the
manipulated objects.

To deal with multiple (possibly non-coplanar) contacts
on arbitrary links, our work builds on that of Di Fava et
al [7], which uses a QP controller to track human motion
with Cartesian space “tasks” and to reason explicitly about
contact friction cones [8]. Early QP control work in computer
graphics demonstrated multi-objective control for generating
natural movements in animated characters [9][10]. In recent
years, QP-based humanoid controllers have become ubiqui-
tous due to their robustness, real-time speeds, and intuitive
formulation. In the recent DARPA Robotics Challenge, a
majority of the teams relied on a QP for their low-level full-
body controller [11][12][13].

In existing motion retargeting methods, the dynamics of
manipulated objects are assumed to be external perturba-
tions [14] or negligible [15] (note that in [14] the character
is rooted to the ground and hence the manipulated objects
do not affect its balance). Vaillant et al [16] introduced the
idea of incorporating external objects and other characters
into a single QP formulation, which allows explicit opti-



mization over physically and behaviorally coupled systems.
Bouyarmane et al [17] implemented this on multi-robot
motions. Other works have shown approaches to modeling
the spatial relationships between multiple agents: Ho et
al [18] introduced the concept of an “interaction mesh” for
retargeting multi-character motions to characters of different
morphologies while preserving spatial relationships; Naka-
mura and Komura [19] extended this work to include balance
and joint constraints for humanoid robots.

Our approach differs from existing work in human-to-
humanoid motion retargeting where manipulated objects, if
any, are light relative to the robot’s own weight. We use a
multi-robot quadratic program (MRQP) framework, which
explicitly models the combined dynamics of the robot and
manipulated element in the environment [16]. This allows the
robot to manipulate heavy objects that significantly affect
its dynamics. It can also generalize human demonstrations
performed on an object of specific properties to situations
with objects of different physical properties (e.g. mass,
friction, spring constant). Other desired behaviors, such as
collision avoidance between bulky or cumbersome manip-
ulated objects and the robot/environment, can be enforced
cleanly within this formulation. Using this framework, we
extend the range of activities possible in human-to-humanoid
motion retargeting.

To demonstrate the capabilities of our method, we show
a simulated robot imitating human demonstrations in several
whole-body loco-manipulation tasks. We show that the robot
can adapt its movement to account for objects of varying
properties.

The rest of this paper is organized as follows. In Section II
we summarize multi-contact motion retargeting with a QP
controller, as introduced in [7]. In Section III we introduce
additionally the new multi-robot QP formulation for multi-
contact motion retargeting. It is experimentally applied in
Section IV, where various whole-body manipulation tasks
are retargeted from a human to humanoid robots in full-body
dynamics simulation. Finally, Sections V and VI conclude
the paper by discussing the limitations of our method and
indicating directions for future work.

II. BACKGROUND : MULTI-CONTACT MOTION CAPTURE
TRACKING QP

In [7], human-to-humanoid multi-contact motion retar-
geting with contact changes is addressed in a two-stage
approach. In the first stage, the sequence of contact change
events

L = (η1, . . . , ηµ) , (1)

is extracted from offline processing of the recorded mo-
tion. A contact change event is encoded into the tuple
ηj = (lj , sj , tj , σj) with lj the robot link index, sj the
environment surface index, tj the timing of the contact
change event, and σj ∈ {0, 1} a binary variable encoding the
event type (0 for a contact breaking event, 1 for a contact
making event).

In the second stage of the approach, the recorded motion is
tracked online by a QP controller, by decomposing the links

Fig. 1. Illustration of the contacts/tracking sets partition at a given phase
of the bag retrieval motion. E1 is the fixed contact supports set, which
includes the right foot and the right hand. E2 is the free tracking set, with
only the left foot in this situation. E3 is the manipulation tracking set, which
includes the left hand holding the handle of the bag. At each contact event
(addition or removal), the three sets (E1, E2, E3) are updated.

of the human/robot in two sets. E1 is the contacts set, the
set of links of the human/robot that are in contact with the
environment. E2 is the active tracking set, the set of links
at the extremities the human/humanoid robot’s limbs that
are freely moving and could potentially make contact with
external objects during the motion (we might refer to these
as end-effectors). E0

2 is the potential tracking set, a constant
set that contains all the links that are tracked whenever they
are not in contact, E2 ⊂ E0

2 (note that links not belonging
to E0

2 can be in E1, e.g. when sitting on the buttocks). The
sets E1 and E2 are separate, i.e. E1 ∩ E2 = ∅. For a given
contacts/tracking sets distribution (E1, E2), the QP that is
instantiated for the robot to track the human motion is the
following (we highlight the dependency on (E1,E2)):

min
q̈,τ,fE1

∑
k∈E2

wk||ẍk − ẍdk(xhum
k )||2

+ wc
∣∣∣∣c̈− c̈d(h(E1)

)∣∣∣∣2
+ w0||q̈ − q̈d(q0)||2 ,

(2)

subject to Mq̈ +N = JTE1
fE1 + ST τ , (3)

JE1 q̈ + J̇E1 q̇ = 0 , (4)
fE1 ∈ CE1 , (5)

torque limits, joint limits, collision avoidance, (6)

where q is the configuration of the robot, M is the mass
matrix of the robot, N the nonlinear effects and gravity term,
τ the actuation torques at the joints of the robot, fE1

the set
of point contact forces applied at the contact links in E1,
JE1 the contact point Jacobians of the links in E1, S the all-
DoFs-to-actuated-DoFs selection matrix, CE1 the Cartesian
product of the linearized friction cones at the contact points



in E1.
The constraints for torque limits, joint angle/velocity lim-

its, and collision avoidance (6) are described in [7], and are
excluded here to emphasize the other equations which are
dependent on the tracking/contact sets partition (E1, E2).

In the cost function (2), the symbol g ∈ {‘xk’, ‘c’, ‘q’}
denotes objectives, or “tasks”: an end-effector pose (position,
orientation) task, a center-of-mass (CoM) task, and a full-
configuration task, respectively, with corresponding weights
wg and stiffness κg . A task is specified by its desired
acceleration g̈d(gref) that tracks a reference value gref as:

g̈d(gref) = g̈ref − κg(ġ − ġref)− 2
√
κg(g − gref) . (7)

The reference value xref
k for k ∈ E2 is set at the corre-

sponding link marker pose from the human motion capture
data xhum

k :
∀k ∈ E2 xref

k = xhum
k . (8)

The reference value for the 2D horizontal component of
the CoM is set at h(E1), which denotes the center of the
projected horizontal support polygon for the set of contacts
in E1 (i.e. the center of the convex hull of the ground
projections of the contact points in E1):

cref
x,y = h(E1) . (9)

The vertical component cref
z is set to track the human motion.

Because maintaining balance is crucial to safe operation of
the robot, the CoM task is given a high weight relative to
the other tasks.

The reference of the full configuration task is set to a rest
posture qref = q0 with a low weight. This task ensures that
the optimization is well-conditioned. In practice, it also helps
generate more natural-looking movements.

The multi-contact motion retargeting algorithm uses the
QP controller to track the human’s motion, while reformu-
lating the objectives and constraints of the QP every time
a contact change event (i.e. a re-partitioning of (E1, E2))
is reached. For contact additions, a contact approach and
stabilization phase is inserted in a fixed time window in order
to ensure stable contacts.

III. ADAPTIVE MANIPULATION MULTI-CONTACT MOTION
RETARGETING

In this work, we incorporate the dynamics of manipulated
objects into the motion capture QP framework reviewed in
Section II. In doing so, we make the following assumptions.
First, we assume that any manipulated object’s inertial and
friction parameters are known to the robot. Second, it is
assumed that the robot can identify relevant contact surfaces
on the objects. These assumptions are reasonable if: the robot
is operating in a known environment, a human operator can
provide this information, or the robot has a perception system
that can estimate these parameters. Given these assumptions,
we can model the whole-body manipulation task in a multi-
robot QP (MRQP).

A. Motion retargeting with manipulation as multi-robot QP

The main idea is to retarget environment manipulation
motions performed by the human, to the humanoid robot
manipulating its own environment. The environment of the
robot may have different inertial properties from the envi-
ronment being manipulated in the human motion capture
data. The simplest example of such a situation is the human
lifting a box of a certain mass in their demonstration, and
the robot performing the same motion on boxes of different
masses (demonstrated in Section IV). To achieve this, we
integrate the MRQP into the multi-contact motion retargeting
framework.

Suppose that the robot is manipulating an environment
object, which may be a free-floating object (e.g. box), a
fixed-base articulated mechanism (e.g. door, drawer), with
passive joints, spring-loaded joints (knob of a door), or
actuated joints (a second robot). As an abuse of language,
we call all these objects “robots” (hence the “multi-robot”
terminology). The general dynamical equation of motion of
the environment object takes the form

Moq̈o +No = JTo fo + STo τo , (10)

where τo are actuation torques. qo is the configuration of
the environment object (e.g. the 6D position/orientation of
a box, or the configuration of an articulated object plus its
6D base position/orientation if the base is not fixed). fo are
all the external forces applied on the object. These include
forces applied by the external fixed environment (fe,o) and
the forces applied by the robot (fr,o) : fo = (fe,o, fr,o).
Decomposing fo, Equation (10) becomes

Moq̈o +No = JTe,ofe,o + JTr,ofr,o + STo τo . (11)

Extending the framework described in Section II, we
redefine E1 as the support contacts set, the set of links
of the robot that are in contact with the fixed environment.
E2 is now defined as the free tracking set, the set of limb
extremities (“end-effectors”) that are freely moving without
any contact. We introduce a new set E3 as the manipulation
tracking set, the set of links of the robot that are in contact
with the manipulated environment object. We denote fE1

as
the forces applied by the fixed environment on the robot, and
fE3

as the set of forces applied by the manipulated object
on the robot. The robot’s equation of motion (3) becomes:

Mq̈ +N = JTE1
fE1 + JTE3

fE3 + ST τ . (12)

According to Newton’s third law, the force applied by the
robot on the object must be equal and opposite to the force
applied by the object on the robot. Thus we have

fE3
= −fr,o . (13)

The minimal set of forces of the problem are thus:

fmulti-robot = (fe, fE3), (14)

where fe = (fE1
, fe,o) denotes the external forces applied

by the fixed environment on the robot and the object, and
fE3

the internal (to the combined system) forces exchanged



between the robot and the object. We ensure that surfaces in
contact move together with:

JE3 q̈ + J̇E3 q̇ = Jr,oq̈o + J̇r,oq̇o, (15)

which complements both (4) and the following equation:

Je,oq̈o + J̇e,oq̇o = 0 . (16)

Let us now rewrite the motion capture tracking QP (2) as a
MRQP for manipulating the environment object. The MRQP
now tracks the links that are in E2 (free tracking set) and
in E3 (manipulation tracking set). We define the multi-robot
quantities by stacking the dynamics equations, as in [16]:

qmulti-robot = (q, qo) , (17)
Mmulti-robot = blockdiag(M,Mo) , (18)
Nmulti-robot = (N,No) , (19)
Smulti-robot = blockdiag(S, So) , (20)
τmulti-robot = (τ, τo) , (21)

Je = blockdiag(JE1
, Je,o) , (22)

The new motion capture tracking MRQP becomes (with
subscript ‘multi-robot’ shortened to ‘mr’, and with depen-
dency on set partition (E1,E2,E3)):

min
q̈mr,τmr,fmr

∑
k∈E2∪E3

wk||ẍk − ẍdk(xhum
k )||2

+ wc
∣∣∣∣c̈mr − c̈dmr

(
h(E1)

)∣∣∣∣2
+ w0||q̈ − q̈d(q0)||2 ,

(23)

subject to Mmrq̈mr +Nmr = JTe fe+[
JE3 − Jr,o

]T
fE3 + STmrτmr ,

(24)

JE1 q̈ + J̇E1 q̇ = 0 , (25)
Je,oq̈o + J̇e,oq̇o = 0 , (26)

JE3 q̈ + J̇E3 q̇ = Jr,oq̈o + J̇r,oq̇o , (27)
(fE1 , fE3 , fe,o) ∈ CE1 × CE3 × Ce,o , (28)

torque limits, joint limits, collision avoidance (29)

The CoM task is now written for the multi-robot CoM
cmulti-robot, that is, the combined CoM of the system contain-
ing all the floating-base entities (robots, objects) in contact
with each other. In the case of the robot manipulating a
free-floating box, cmulti-robot is the CoM of the {robot, box}
system. See Section III-C for more details on the CoM task
and balancing during manipulation.

For the sake of simplicity, we showed here a particular
instantiation of the general MRQP formulation: the simpli-
fied case in which the multi-robot system is restricted to one
robot and one object. The general formulation in [16] with an
arbitrary number N of entities is much more expressive and
allows control of multi-robot multi-object co-manipulation
systems, where for example two robots collaborate to manip-
ulate an object. We have implemented our approach within
this general N -entity framework.

Algorithm 1: Updating the tracking sets (E1, E2, E3)

Input: Sequence of multi-robot contact change events
L = (η1, . . . , ηµ)

Data: E1: support contact set
E2: free tracking set
E3: manipulation tracking set

initialize t← 0
initialize j ← 1
initialize E1, E2, E3

repeat
if t < tj or j > µ then

Solve MRQP (23)
t← t+ dt

else t = tj : handle contact event
if γj = (rob, env) then

if σj = 0 then
E1 ← E1 \ {lj}
Ensure CoM in support polygon of E1

E2 ← E2 ∪ {lj}
else σj = 1

Stabilize contact
E2 ← E2 \ {lj}
E1 ← E1 ∪ {lj}

else if γj = (rob, obj) then
if σj = 0 then

E3 ← E3 \ {lj}
Ensure CoM in support polygon of E1

E2 ← E2 ∪ {lj}
else σj = 1

Stabilize contact
E2 ← E2 \ {lj}
E3 ← E3 ∪ {lj}

Update objective and constraints of MRQP (23)
increment j ← j + 1

until t = tend of motion;

B. Dealing with contact change events

We adapt the motion capture tracking algorithm described
at the end of Section II in the following way. The contact
events ηj now also encode the pair of entities between which
the contact event happens, in a variable γj . γj takes a value
in the set

γj ∈ {(rob, env), (rob, obj), (obj, env)} . (30)

lj now encodes the index of the link/surface of the first entity
in γj , sj the index of the link/surface of the second entity
in γj . Therefore, ηj = (γj , lj , sj , tj , σj). When time tj of a
contact event is reached, all three sets E1, E2 and E3 are
updated and the multi-robot QP is reformulated. Algorithm 1
presents the overall logic of our tracking method.

When a contact event is detected, the robot temporarily
pauses human motion tracking to ensure that the contact is
handled before proceeding.



For contact removals, this amounts to moving the CoM
of the system into the new support polygon before removing
the support. For example, when the demonstration motion
goes from three contacts (e.g. two feet and one hand on
the table) to two contacts (e.g. one hand and one foot), the
robot must bring its CoM to be between the two planned
support surfaces before removing the contact. Similarly, if
the robot is about to release a manipulated object, it must
first check that its individual (not multi-robot) CoM lies
within its support polygon. For contact additions, we add
two temporary end effector tasks to ensure a stable contact,
as described in [7]: a surface vector stabilization task to
ensure that the robot’s end-effector surface is parallel to
the object surface, and a surface transform task to drive the
distance between the two surfaces to zero. Once the contact
change conditions are fulfilled, the robot resumes tracking
the demonstration.

In our experiments described below, we first record the
human demonstration and play it back afterwards for the
robot to track. However, our algorithm is compatible with
real-time tracking, as long as there is a mechanism for
contact event detection. One caveat is that (as mentioned
in [15]), contact and CoM stabilization add delay to the
tracking, so movements with contact changes occurring in
rapid succession may be difficult to track. However, we
can compensate for the delay by “buffering” the human
demonstration trajectory.

C. Center of Mass tracking

In the previous work [7], the CoM task horizontal ref-
erence value was set independently of the human CoM
at h(E1), the center of the support polygon formed by
the ground projections of the contact surfaces in E1 (we
call those surfaces support surfaces). In Section III-A we
presented a direct extension of this approach, adapted to
manipulation retargeting and multi-robot QP formulation,
by replacing the CoM of the robot with the CoM of the
combined system {robot, object} when the robot is ma-
nipulating a free-floating object, cmulti-robot. In this section,
we propose an additional approach that allows tracking
of the human CoM motion during multi-contact (but non-
manipulation) phases, resulting in smoother and more robust
contact support changes.

We formulate a generalization of the method proposed in
Koenemann et al [15], where the robot tracks a normalized
offset (denoted as φ) between its support surfaces. We define
a support point pi as the center of a support surface that is
in contact with the fixed environment.

Let us denote chum
x,y as the 2D ground projection of the

human CoM. First, chum
x,y is projected onto the vector from an

arbitrary reference support phum
0 to each of the other support

points phum
i , i = 1, . . . , nsupports, following Koenemann’s

formulation, to get the normalized offsets:

φhum
i =

(
chum
x,y − phum

0

)
·
(
phum
i − phum

0

)∥∥phum
i − phum

0

∥∥2 . (31)

Fig. 2. Finding normalized offset values for CoM tracking. The contact
surfaces correspond to a phase in the bag retrieval task in Section IV, with
foot contacts p0 and p1, hand contact p2.

The target coordinates for the robot’s CoM projection can
then be calculated as a linear combination of these offsets
with:

ψ(E1, c
hum
x,y ) = prob

0 +

nsupports∑
i=0

φhum
i (prob

i − prob
0 ) . (32)

We finally replace the reference CoM in (9) with

cref
multi-robot,x,y = ψ(E1, c

hum
x,y ) . (33)

The process is illustrated in Fig. 2. In the case of dou-
ble support, this amounts to the formulation of [15]. Our
formulation generalizes to situations in which there are
hands in contact with the environment. Compared to tracking
CoM coordinates in Cartesian space, tracking the CoM in
normalized coordinates is more robust to differences in robot
size, as well as slight offsets in support position.

IV. EXPERIMENTS

To demonstrate the advantages of our method, we con-
ducted three whole-body manipulation tasks in simulation on
the HRP-2 and HRP-4 humanoid robots. Two of the tasks
require balancing while manipulating objects, and the other
demonstrates a scenario with a non-free-floating environment
object. Footage of both the human demonstrations and robot
motions are in the supplementary video.

For each experiment, we first record a human demon-
stration to guide the robot in the task. We use an Xsens
inertial motion capture suit to capture human pose. The
demonstration data from the motion capture system is then
annotated with contact change events (additions or removals
of contacts points). In the experiments described below, this
post-processing step is done manually, as it is out of the
scope of this paper. However, there are many ways to extract
contact event information as an offline step (as shown in [7]),
or in real-time, using Xsens’s contact detection API or force
sensors on the human’s end-effectors. After recording the
human motion, we set up an identical environment for the
humanoid robot in simulation, and have it use the algorithm
described above to follow the human’s demonstration.

In the first experiment, we demonstrate a motion to pick
up a bag from a table while using the table as support to



Fig. 3. First demonstration task: robot must use its hand as a support on the table while reaching for a bag.

Fig. 4. Second task: opening a door.

lean forward (shown in Fig. 3). This task requires multiple
interactions with both static and floating-base environment
objects. For this particular task, we slowed down playback
of the human demonstration motion to account for contact
change events that violated our quasi-static CoM stability
assumption. This will be discussed further in Sections V
and VI.

For the second task, we retarget a door-opening motion to
demonstrate a simple example of a non-floating-base envi-
ronment object in the multi-robot QP. The human demonstra-
tion is carried out on a door whose hinge joint is not spring-
loaded (spring constant k = 0). In the simulation, we vary
the spring constant of the door joint between k = 0, 10, 100.
Figure 5 shows the changes in actuation that the multi-robot
QP computes in order to execute a visually similar motion
on doors of varying resistance.

The third task demonstrates adaptation to a free-floating
environment object of varying inertial parameters. It is se-
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Fig. 5. Torques from right ankle during door opening task, for varying
spring constants. Higher ankle torques for higher spring constants because
the robot must “push” against the door’s resistance.

quenced as follows: squat down, pick up a box from the
floor, shift to balance on one leg, place box on table. This
is depicted in Fig. 6. The human naturally tends to push the
floating leg backwards to maintain their joint CoM within
the support polygon and reach further with their arms.

The original demonstration was conducted with a box
of mass 0.35kg. For the experiment, we varied the mass
of the box to show the effects on the robot’s behavior.
The results are shown in Fig. 7. Note that as the box gets
heavier, the robot moves its right foot further backwards to
compensate and keep the combined CoM inside its single-
foot support polygon. In doing so, it “ignores” other lower-
weight objectives such as human motion tracking (right
foot position) and reference posture tracking. This behavior
emerges naturally from the weighted prioritization scheme in
the QP. For this task, using a single-robot QP (without the
box incorporated into the dynamics model) fails, because the
robot does not compensate for the gravitational force acting
on the box.

In Fig. 8, we plot the motor torque commands output by
the multi-robot QP (23). It is clear that as the box gets
heavier, the controller compensates with higher torques in



Fig. 6. Third demonstration task: picking up a box, balancing on one foot and placing on table

Fig. 7. The robot following a single human demonstration for boxes
of varying mass: 0.35kg (left), 3kg (center), 8kg (right). Notice that the
robot moves its right foot backward to compensate for the heavier box,
maintaining the combined CoM position.
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Fig. 8. Motor torques in left leg during the third experiment. A clear
difference can be seen in the motor torque commands for each box weight

the lower body, even with visually similar motions. Although
our robots use position-controlled joints (a setpoint qdes set by
double-integrating q̈ output from QP), this would be useful as
feed-forward torque commands for torque-controlled robots.

V. CONCLUSIONS

In this work, we have presented a framework using a
multi-robot quadratic program for adaptive whole-body ma-
nipulation tasks in human-to-humanoid motion retargeting.
The incorporation of the dynamics of all “robots” into a
single optimization allows for automatic adaptation of the
human demonstration to environment objects of varying
physical properties. This ability to retarget motions involving
heavy object manipulation is novel, and a contribution to the
state-of-the-art. Our controller also opens up possibilities for
collaborative motions between robot-robot and human-robot
teams. We demonstrated the capabilities of our framework
through simulation experiments.

An unsolved issue is the tracking of highly dynamic
motions with contact set changes. Such dynamic motions are
usually achieved in humanoids with offline computationally
trajectory optimization approaches [20] based on non-linear
optimization tools [21]. In our experiments, we assume
that the human’s demonstrations can be tracked with quasi-
statically stable motions - hence our conditions for bring-
ing the CoM above the support polygon before removing
contacts. Another limitations is that the system does not
yet run in real-time (addressed below in Future Work). We
also make assumptions about the robot operating in a known
environment with a model provided by the human operator
(this was the case, for example, in the DARPA Robotics
Challenge). However, there has been progress towards au-
tomatic extraction of environment model parameters using
a Kalman-filter approach [17], friction coefficients from
vision [22], and specially designed neural networks [23].

VI. FUTURE WORK

In the near future, we will implement the algorithm
presented here on a real humanoid robot. We plan on using
force controllers on the end effectors (as described in [17])
to account for differences between expected and real-world



contact forces. We will also integrate touch-sensing gloves
and shoes so that contact events can be detected on-the-fly
and used for real-time motion tracking.

Many common human motions are not quasistatically
stable; in fact, they use momentum to achieve better energy
efficiency. In humanoid robots, this insight has led to plan-
ning and execution of dynamic locomotion using simplified
models such as ZMP [24] and centroidal momentum [25].
However, these methods often assume full authority over
the robot’s future movements. The difficulty with tracking
human motions in real-time is that the human dictates the
reference motion for the robot, and the robot does not know
where they will go in the future. We believe that the first
step towards highly dynamic motion tracking would be to
adopt some of the methods based on simplified models
used in locomotion planning, such as the capture point [26].
Examining the contact wrench set is also a good way to
measure feasibility, and there has been some recent work
in constructing a feasible region of CoM positions and
accelerations based on this notion [27]. In the longer term,
we envision the combination of a fully versatile human-to-
humanoid loco-manipulation retargeting system with whole-
body motor-imagery BCI control [28] to enhance the retar-
geting system with a feed-forward predictive “intention of
motion” component.

ACKNOWLEDGEMENTS

The authors would like to thank the IDH team in LIRMM
and JRL for their support in using the multi-robot QP
framework.

REFERENCES

[1] N. S. Pollard, J. K. Hodgins, M. J. Riley, and C. G. Atkeson, “Adapting
human motion for the control of a humanoid robot,” in Robotics
and Automation, 2002. Proceedings. ICRA’02. IEEE International
Conference on, vol. 2. IEEE, 2002, pp. 1390–1397.

[2] B. Dariush, M. Gienger, A. Arumbakkam, Y. Zhu, B. Jian, K. Fu-
jimura, and C. Goerick, “Online transfer of human motion to hu-
manoids,” International Journal of Humanoid Robotics, vol. 6, no. 02,
pp. 265–289, 2009.

[3] K. Yamane and J. Hodgins, “Control-aware mapping of human motion
data with stepping for humanoid robots,” in Intelligent Robots and
Systems (IROS), 2010 IEEE/RSJ International Conference on. IEEE,
2010, pp. 726–733.

[4] S.-K. Kim, S. Hong, and D. Kim, “A walking motion imitation
framework of a humanoid robot by human walking recognition from
imu motion data,” in Humanoid Robots, 2009. Humanoids 2009. 9th
IEEE-RAS International Conference on. IEEE, 2009, pp. 343–348.

[5] K. Hu, C. Ott, and D. Lee, “Online human walking imitation in task
and joint space based on quadratic programming,” in Robotics and
Automation (ICRA), 2014 IEEE International Conference on. IEEE,
2014, pp. 3458–3464.

[6] G. Bin Hammam, P. M. Wensing, B. Dariush, and D. E. Orin, “Kinody-
namically consistent motion retargeting for humanoids,” International
Journal of Humanoid Robotics, vol. 12, no. 04, p. 1550017, 2015.

[7] A. Di Fava, K. Bouyarmane, K. Chappellet, E. Ruffaldi, and A. Khed-
dar, “Multi-contact motion retargeting from human to humanoid
robot,” in Humanoid Robots (Humanoids), 2016 IEEE-RAS 16th
International Conference on. IEEE, 2016, pp. 1081–1086.

[8] K. Bouyarmane and A. Kheddar, “On weight-prioritized multitask
control of humanoid robots,” IEEE Transactions on Automatic Control,
2017.

[9] Y. Abe, M. Da Silva, and J. Popović, “Multiobjective control
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